Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins.

نویسندگان

  • A M Borman
  • P Le Mercier
  • M Girard
  • K M Kean
چکیده

We recently compared the efficiency of six picornaviral internal ribosome entry segments (IRESes) and the hepatitis C virus (HCV) IRES for their ability to drive internal initiation of translationin vitro. Here we present the results of a similar comparison performed in six different cultured cell lines infected with a recombinant vaccinia virus expressing the T7 polymerase and transfected with dicistronic plasmids. The IRESes could be divided into three groups: (i) the cardiovirus and aphthovirus IRESes (and the HCV element) direct internal initiation efficiently in all cell lines tested; (ii) the enterovirus and rhinovirus IRESes are at least equally efficient in several cell lines, but are extremely inefficient in certain cell types; and (iii) the hepatitis A virus IRES is incapable of directing efficient internal initiation in any of the cell lines used (including human hepatocytes). These are the same three groups found when IRESes were classified according to their activitiesin vitro, or according to sequence homologies. In a mouse neuronal cell line, the poliovirus and other type I IRESes were not functional in an artificial bicistronic context. However, infectious poliovirions were produced efficiently after transfection of these cells with a genomic length RNA. Furthermore, activity of the type I IRESes was dramatically increased upon co-expression of the poliovirus 2A proteinase, demonstrating that while IRES efficiency may vary considerably from one cell type to another, at least in some cases viral proteins are capable of overcoming cell-specific translational defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional characterization of the internal ribosome entry site of eIF4G mRNA.

The eIF4 group initiation factors are required for cap-dependent translation initiation. Infection of mammalian cells by picornaviruses results in proteolytic cleavage of one of these factors, eIF4G, which severely restricts cap-dependent initiation but permits cap-independent initiation to proceed from an internal ribosome entry site (IRES) in picornaviral RNAs. The first 357 nucleotides (nt) ...

متن کامل

Ectropis obliqua picorna-like virus IRES-driven internal initiation of translation in cell systems derived from different origins.

Ectropis obliqua picorna-like virus (EoPV) is an insect RNA virus that causes a lethal granulosis infection of larvae of the tea looper (Ectropis obliqua). An internal ribosome entry site (IRES) mediates translation initiation of EoPV RNA. Here, bicistronic constructs were used to examine the 5' untranslated region (UTR) of EoPV for IRES activity. The capacities of the EoPV 5' UTR IRES and anot...

متن کامل

Activation of picornaviral IRESs by PTB shows differential dependence on each PTB RNA-binding domain.

Polypyrimidine tract binding protein (PTB) is an RNA-binding protein with four RNA-binding domains (RBDs). It is a major regulator of alternative splicing and also stimulates translation initiation at picornavirus IRESs (internal ribosome entry sites). The sites of interaction of each RBD with two picornaviral IRESs have previously been mapped. To establish which RBD-IRES interactions are essen...

متن کامل

Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes.

Certain viral and cellular mRNAs initiate translation cap-independently at internal ribosome entry site (IRES) elements. Picornavirus IRES elements are widely used in dicistronic or multicistronic vectors in gene therapy, virus replicon systems, and analysis of IRES function. In such vectors, expression of the upstream gene often serves as internal control to standardize the readings of IRES-dr...

متن کامل

A novel role for Gemin5 in mRNA translation

In eukaryotic cells translation initiation occurs through two alternative mechanisms, a cap-dependent operating in the majority of mRNAs, and a 5'-end-independent driven by internal ribosome entry site (IRES) elements, specific for a subset of mRNAs. IRES elements recruit the translation machinery to an internal position in the mRNA through a mechanism involving the IRES structure and several t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 1997